Extensions 1→N→G→Q→1 with N=C22 and Q=C13⋊D4

Direct product G=N×Q with N=C22 and Q=C13⋊D4
dρLabelID
C22×C13⋊D4208C2^2xC13:D4416,226

Semidirect products G=N:Q with N=C22 and Q=C13⋊D4
extensionφ:Q→Aut NdρLabelID
C221(C13⋊D4) = Dic13⋊D4φ: C13⋊D4/Dic13C2 ⊆ Aut C22208C2^2:1(C13:D4)416,160
C222(C13⋊D4) = C23⋊D26φ: C13⋊D4/D26C2 ⊆ Aut C22104C2^2:2(C13:D4)416,158
C223(C13⋊D4) = C24⋊D13φ: C13⋊D4/C2×C26C2 ⊆ Aut C22104C2^2:3(C13:D4)416,174

Non-split extensions G=N.Q with N=C22 and Q=C13⋊D4
extensionφ:Q→Aut NdρLabelID
C22.1(C13⋊D4) = C52.C23φ: C13⋊D4/Dic13C2 ⊆ Aut C222084C2^2.1(C13:D4)416,171
C22.2(C13⋊D4) = C23⋊Dic13φ: C13⋊D4/D26C2 ⊆ Aut C221044C2^2.2(C13:D4)416,41
C22.3(C13⋊D4) = C52.56D4φ: C13⋊D4/D26C2 ⊆ Aut C221044C2^2.3(C13:D4)416,44
C22.4(C13⋊D4) = C23.18D26φ: C13⋊D4/D26C2 ⊆ Aut C22208C2^2.4(C13:D4)416,156
C22.5(C13⋊D4) = D4⋊D26φ: C13⋊D4/D26C2 ⊆ Aut C221044+C2^2.5(C13:D4)416,170
C22.6(C13⋊D4) = D4.9D26φ: C13⋊D4/D26C2 ⊆ Aut C222084-C2^2.6(C13:D4)416,172
C22.7(C13⋊D4) = D524C4φ: C13⋊D4/C2×C26C2 ⊆ Aut C221042C2^2.7(C13:D4)416,12
C22.8(C13⋊D4) = C22.2D52φ: C13⋊D4/C2×C26C2 ⊆ Aut C221044C2^2.8(C13:D4)416,13
C22.9(C13⋊D4) = C23.23D26φ: C13⋊D4/C2×C26C2 ⊆ Aut C22208C2^2.9(C13:D4)416,150
C22.10(C13⋊D4) = D526C22φ: C13⋊D4/C2×C26C2 ⊆ Aut C221044C2^2.10(C13:D4)416,153
C22.11(C13⋊D4) = Q8.D26φ: C13⋊D4/C2×C26C2 ⊆ Aut C222084C2^2.11(C13:D4)416,163
C22.12(C13⋊D4) = C26.D8central extension (φ=1)416C2^2.12(C13:D4)416,14
C22.13(C13⋊D4) = C52.Q8central extension (φ=1)416C2^2.13(C13:D4)416,15
C22.14(C13⋊D4) = D526C4central extension (φ=1)208C2^2.14(C13:D4)416,16
C22.15(C13⋊D4) = C26.Q16central extension (φ=1)416C2^2.15(C13:D4)416,17
C22.16(C13⋊D4) = C26.10C42central extension (φ=1)416C2^2.16(C13:D4)416,38
C22.17(C13⋊D4) = D4⋊Dic13central extension (φ=1)208C2^2.17(C13:D4)416,39
C22.18(C13⋊D4) = Q8⋊Dic13central extension (φ=1)416C2^2.18(C13:D4)416,42
C22.19(C13⋊D4) = C2×C26.D4central extension (φ=1)416C2^2.19(C13:D4)416,144
C22.20(C13⋊D4) = C2×D26⋊C4central extension (φ=1)208C2^2.20(C13:D4)416,148
C22.21(C13⋊D4) = C2×D4⋊D13central extension (φ=1)208C2^2.21(C13:D4)416,152
C22.22(C13⋊D4) = C2×D4.D13central extension (φ=1)208C2^2.22(C13:D4)416,154
C22.23(C13⋊D4) = C2×Q8⋊D13central extension (φ=1)208C2^2.23(C13:D4)416,162
C22.24(C13⋊D4) = C2×C13⋊Q16central extension (φ=1)416C2^2.24(C13:D4)416,164
C22.25(C13⋊D4) = C2×C23.D13central extension (φ=1)208C2^2.25(C13:D4)416,173

׿
×
𝔽